Structural, magnetic and optical properties of diluted magnetic semiconductor (DMS) phase of Ni modified CuO nanoparticles
Control on the size of copper oxide (CuO) in the nano range is a highly motivating approach to study its multifunctional nature. The present investigation reports a sol-gel derived Ni doped CuO nanoparticles (Cu1-xNixO). Rietveld refinement of the XRD spectra confirms the formation of single monocli...
Gespeichert in:
Veröffentlicht in: | Current applied physics 2021, 32(0), , pp.24-35 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Control on the size of copper oxide (CuO) in the nano range is a highly motivating approach to study its multifunctional nature. The present investigation reports a sol-gel derived Ni doped CuO nanoparticles (Cu1-xNixO). Rietveld refinement of the XRD spectra confirms the formation of single monoclinic phase of Cu1-xNixO nanoparticles having crystallite size within the range of 19–21 nm. Raman spectra show the presence of characteristics Raman active modes and vibrational bands in the Cu1-xNixO samples that corroborate the monoclinic phase of the samples as revealed by refinement of XRD data. The estimated band gap of pure CuO is found to be ∼1.43 eV, which decreases with the increase of dopant concentration into CuO matrix. This result is in line with estimated crystallite size. Magnetization curves confirm the weak ferromagnetic nature of Cu1-xNixO nanoparticles which reveal the DMS phase. This weak magnetic nature may be induced in the samples due to the exchange interaction between the localized magnetic d-spins of Ni ions and carriers (holes or electrons) from the valence band of pristine CuO lattice. Replacement of Cu+2 by Ni+2 ions into the host CuO lattice induces the magnetization. The quantified value of squareness ratio (S |
---|---|
ISSN: | 1567-1739 1878-1675 |
DOI: | 10.1016/j.cap.2021.09.002 |