Recent Developments in 3D Printing of Droplet-Based Microfluidics
The advent of microfluidics, especially with the integration of droplet-based systems, has led to significant innovations and outstanding applications in many fields. While this field of study has grown increasingly over the years, the conventional method of fabricating these devices has discouraged...
Gespeichert in:
Veröffentlicht in: | Biochip journal 2021, 15(4), , pp.313-333 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The advent of microfluidics, especially with the integration of droplet-based systems, has led to significant innovations and outstanding applications in many fields. While this field of study has grown increasingly over the years, the conventional method of fabricating these devices has discouraged their large-scale production, making their commercialization almost impossible. This is because traditional methods of producing droplet-based microfluidics are mostly time-consuming and labor-intensive and involve multiple processes. The emergence of 3D printing has found its application in microfluidics, providing an avenue for ease of fabrication with the aim of overcoming the limitations of conventional methods. While previous studies focused on studying the role of 3D printing in microfluidics, no study has categorically focused on the application of additive manufacturing to droplet-based microfluidics. This paper reviews the various 3D printing techniques associated with droplet-based microfluidics. Furthermore, we identify the salient features, limitations, and material properties of each printing technique while providing certain projections about their future application. |
---|---|
ISSN: | 1976-0280 2092-7843 |
DOI: | 10.1007/s13206-021-00032-1 |