A note on the mixed van der Waerden number

Let $r \geq 2$, and let $ k_i \geq 2$ for $1 \leq i \leq r$. Mixed van der Waerden's theorem states that there exists a least positive integer $w= w(k_1, k_2, k_3, \dots, k_r;r)$ such that for any $n \geq w$, every $r$-colouring of $[1,n]$ admits a $k_i$-term arithmetic progression with colour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2021, 58(6), , pp.1341-1354
Hauptverfasser: Kai An Sim, Ta Sheng Tan, Kok Bin Wong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $r \geq 2$, and let $ k_i \geq 2$ for $1 \leq i \leq r$. Mixed van der Waerden's theorem states that there exists a least positive integer $w= w(k_1, k_2, k_3, \dots, k_r;r)$ such that for any $n \geq w$, every $r$-colouring of $[1,n]$ admits a $k_i$-term arithmetic progression with colour $i$ for some $i \in [1,r]$. For $k \geq 3$ and $r \geq 2$, the mixed van der Waerden number $w(k,2,2, \dots, 2;r)$ is denoted by $w_2(k;r)$. B. Landman and A. Robertson \cite{vdw5} showed that for $k < r < \frac{3}{2} (k-1)$ and $r \geq 2k+2$, the inequality $w_2(k;r) \leq r(k-1)$ holds. In this note, we establish some results on $w_2(k;r)$ for $2 \leq r \leq k$. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b200718