A note on the mixed van der Waerden number
Let $r \geq 2$, and let $ k_i \geq 2$ for $1 \leq i \leq r$. Mixed van der Waerden's theorem states that there exists a least positive integer $w= w(k_1, k_2, k_3, \dots, k_r;r)$ such that for any $n \geq w$, every $r$-colouring of $[1,n]$ admits a $k_i$-term arithmetic progression with colour...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2021, 58(6), , pp.1341-1354 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $r \geq 2$, and let $ k_i \geq 2$ for $1 \leq i \leq r$. Mixed van der Waerden's theorem states that there exists a least positive integer $w= w(k_1, k_2, k_3, \dots, k_r;r)$ such that for any $n \geq w$, every $r$-colouring of $[1,n]$ admits a $k_i$-term arithmetic progression with colour $i$ for some $i \in [1,r]$. For $k \geq 3$ and $r \geq 2$, the mixed van der Waerden number $w(k,2,2, \dots, 2;r)$ is denoted by $w_2(k;r)$. B. Landman and A. Robertson \cite{vdw5} showed that for $k < r < \frac{3}{2} (k-1)$ and $r \geq 2k+2$, the inequality $w_2(k;r) \leq r(k-1)$ holds. In this note, we establish some results on $w_2(k;r)$ for $2 \leq r \leq k$. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b200718 |