시계열 모형과 기계학습 모형을 이용한 풍력 발전량 예측 연구
빠르게 발전하고 있는 재생에너지 중 하나인 풍력에너지는 기후변화 대응에 맞추어 개발 및 투자가 이루어지고있다. 신재생에너지 정책과 발전소 설치가 추진됨에 따라 국내 풍력 보급이 점차 확대되어 수요를 정확히 예측하기 위한 시도들이 확대되고 있다. 본 논문에서는 전남지역과 경북지역의 풍력 발전량 예측을 위하여 시계열 기법인 ARIMA, ARIMAX 모형과 기계학습 모형인 SVR, Random Forest, XGBoost 모형들을 비교 분석하였다. 모형의 예측 결과를 비교하기 위한 지표로서 mean absolute error (MAE)와...
Gespeichert in:
Veröffentlicht in: | Ŭngyong tʻonggye yŏnʼgu 2021, 34(5), , pp.723-734 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 빠르게 발전하고 있는 재생에너지 중 하나인 풍력에너지는 기후변화 대응에 맞추어 개발 및 투자가 이루어지고있다. 신재생에너지 정책과 발전소 설치가 추진됨에 따라 국내 풍력 보급이 점차 확대되어 수요를 정확히 예측하기 위한 시도들이 확대되고 있다. 본 논문에서는 전남지역과 경북지역의 풍력 발전량 예측을 위하여 시계열 기법인 ARIMA, ARIMAX 모형과 기계학습 모형인 SVR, Random Forest, XGBoost 모형들을 비교 분석하였다. 모형의 예측 결과를 비교하기 위한 지표로서 mean absolute error (MAE)와 mean absolute percentage error (MAPE)를 사용하였다. 2018년 1월 1일부터 2020년 10월 24일까지의 시간별 원 데이터를 차분한 후 모형을 훈련시켜 2020년 10월 25일부터 2020년 10월 31일까지의 168시간에 대한 풍력 발전량을 예측하였다. 모형의 예측력 비교 결과, Random Forest와 XGBoost 모형이 전남지역, 경북지역 순으로 가장 우수한 성능을 보였다. 향후 연구에서는 기계학습뿐 아니라 최근 활발한 연구가 이루어지는 데이터 마이닝 기법 기반의 풍력 발전량 예측을 시도할 것이다.
Wind energy is one of the rapidly developing renewable energies which is being developed and invested in response to climate change. As renewable energy policies and power plant installations are promoted, the supply of wind power in Korea is gradually expanding and attempts to accurately predict demand are expanding. In this paper, the ARIMA and ARIMAX models which are Time series techniques and the SVR, Random Forest and XGBoost models which are machine learning models were compared and analyzed to predict wind power generation in the Jeonnam and Gyeongbuk regions. Mean absolute error (MAE) and mean absolute percentage error (MAPE) were used as indicators to compare the predicted results of the model. After subtracting the hourly raw data from January 1, 2018 to October 24, 2020, the model was trained to predict wind power generation for 168 hours from October 25, 2020 to October 31, 2020. As a result of comparing the predictive power of the models, the Random Forest and XGBoost models showed the best performance in the order of Jeonnam and Gyeongbuk. In future research, we will try not only machine learning models but also forecasting wind power generation based on data mining techniques that have been actively researched recently. |
---|---|
ISSN: | 1225-066X 2383-5818 |