MULTIPLICITY OF SOLUTIONS FOR QUASILINEAR SCHRÖDINGER TYPE EQUATIONS WITH THE CONCAVE-CONVEX NONLINEARITIES
We deal with the following elliptic equations: { − div ( φ ′ ( | ∇ z | 2 ) ∇ z ) + V ( x ) | z | α − 2 z = λ ρ ( x ) | z | r − 2 z + h ( x , z ) , z ( x ) → 0 , a s | x | → ∞ , in ℝN , where N ≥ 2, 1 < p < q < N, 1 < α ≤ p*q'/p', α < q, 1 < r < min{p, α}, φ(t) behaves...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2021, 58(6), , pp.1461-1484 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We deal with the following elliptic equations: { − div ( φ ′ ( | ∇ z | 2 ) ∇ z ) + V ( x ) | z | α − 2 z = λ ρ ( x ) | z | r − 2 z + h ( x , z ) , z ( x ) → 0 , a s | x | → ∞ , in ℝN , where N ≥ 2, 1 < p < q < N, 1 < α ≤ p*q'/p', α < q, 1 < r < min{p, α}, φ(t) behaves like tq/2 for small t and tp/2 for large t, and p' and q' the conjugate exponents of p and q, respectively. Here, V : ℝN → (0, ∞) is a potential function and h : ℝN × ℝ → ℝ is a Carathéodory function. The present paper is devoted to the existence of at least two distinct nontrivial solutions to quasilinear elliptic problems of Schrödinger type, which provides a concave-convex nature to the problem. The primary tools are the well-known mountain pass theorem and a variant of Ekeland's variational principle. KCI Citation Count: 0 |
---|---|
ISSN: | 0304-9914 2234-3008 |
DOI: | 10.4134/JKMS.j210099 |