Backstepping Sliding Mode Trajectory Tracking via Extended State Observer for Quadrotors with Wind Disturbance
To overcome nonlinear, underactuated and external wind disturbances problems for the 6-DOF (degrees of freedom) quadrotor unmanned aerial vehicle (UAV) system, a backstepping sliding mode control algorithm based on high-order extended state observer (ESO) is proposed. Based on the hierarchical contr...
Gespeichert in:
Veröffentlicht in: | International journal of control, automation, and systems 2021, Automation, and Systems, 19(10), , pp.3273-3284 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To overcome nonlinear, underactuated and external wind disturbances problems for the 6-DOF (degrees of freedom) quadrotor unmanned aerial vehicle (UAV) system, a backstepping sliding mode control algorithm based on high-order extended state observer (ESO) is proposed. Based on the hierarchical control principle, the quadrotor UAV dynamic system is decomposed into position subsystem and attitude subsystem to facilitate the backstepping control design. Moreover, the EXO is used to estimate the remaining unmeasurable states and the external wind disturbances online. The advantages of the controllers are that they can not only ensure good tracking performance, but also deal with uncertain external disturbances. To imitate the real situation as much as possible, the external wind disturbances are composed of four basic wind models in this paper. The tracking error and estimate error of the design methods are shown to arbitrarily small by using Lyapunov theory. Finally, the effectiveness and superiority of the proposed control algorithm are proved by the simulation. |
---|---|
ISSN: | 1598-6446 2005-4092 |
DOI: | 10.1007/s12555-020-0673-5 |