Characterization of Lie type derivation on von Neumann algebra with local actions
Let $\mathcal{A}$ be a von Neumann algebra with no central summands of type $I_1.$ In this article, we study Lie ${n}$-derivation on von Neumann algebra and prove that every additive Lie ${n}$-derivation on a von Neumann algebra has standard form at zero product as well as at projection product. KCI...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2021, 58(5), , pp.1193-1208 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $\mathcal{A}$ be a von Neumann algebra with no central summands of type $I_1.$ In this article, we study Lie ${n}$-derivation on von Neumann algebra and prove that every additive Lie ${n}$-derivation on a von Neumann algebra has standard form at zero product as well as at projection product. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b200850 |