Characterization of Lie type derivation on von Neumann algebra with local actions

Let $\mathcal{A}$ be a von Neumann algebra with no central summands of type $I_1.$ In this article, we study Lie ${n}$-derivation on von Neumann algebra and prove that every additive Lie ${n}$-derivation on a von Neumann algebra has standard form at zero product as well as at projection product. KCI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2021, 58(5), , pp.1193-1208
Hauptverfasser: Mohammad Ashraf, Aisha Jabeen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\mathcal{A}$ be a von Neumann algebra with no central summands of type $I_1.$ In this article, we study Lie ${n}$-derivation on von Neumann algebra and prove that every additive Lie ${n}$-derivation on a von Neumann algebra has standard form at zero product as well as at projection product. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b200850