An investigation on the improvement of neutron radiography system of the Tehran research reactor by using MCNPX simulations
Applying the available neutron flux for medical and industrial purposes is the most important application of research reactors. The neutron radiography system is used for non-destructive testing (NDT) of materials so that it is one of the main applications of nuclear research reactors. One of these...
Gespeichert in:
Veröffentlicht in: | Nuclear engineering and technology 2021, 53(10), , pp.3413-3420 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Applying the available neutron flux for medical and industrial purposes is the most important application of research reactors. The neutron radiography system is used for non-destructive testing (NDT) of materials so that it is one of the main applications of nuclear research reactors. One of these research reactors is the 5 MW pool-type light water research reactor of Tehran (TRR). This work aims to investigate on materials and location of the beam tube (BT) of the TRR radiography system to improve the index parameters of BT. Our results showed that a through-type BT with 20 cm thick carbon neutron filter, 1.2 cm and 9.4 cm of the diameter of inlet (D1) and output (D2) BT, respectively gives thermal neutron flux almost 25.7, 5.6 and 1.1 times greater than the former design of the TRR (with D1 = 1.8 cm and D1 = 9.4 cm), previous design of the TRR with D1 = 3 cm and D1 = 9.4 cm, and another design with D1 = 5 cm and D1 = 9.4 cm, respectively. Therefore, the design proposed in this paper could be a better alternative to the current BT of the TRR. |
---|---|
ISSN: | 1738-5733 2234-358X |
DOI: | 10.1016/j.net.2021.04.014 |