Performance of 4D-Var Data Assimilation on Extreme Snowfall Forecasts over the Western Himalaya Using WRF Model
The accurate predictions of extreme precipitation/snowfall events are very helpful in identifying the severe avalanche/landslide prone hazard areas in advance over high mountainous regions. The Weather Research and Forecasting model (WRF) version 3.9 has been used to investigate the performance of F...
Gespeichert in:
Veröffentlicht in: | Asia-Pacific journal of atmospheric sciences 2021, 57(3), , pp.555-571 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The accurate predictions of extreme precipitation/snowfall events are very helpful in identifying the severe avalanche/landslide prone hazard areas in advance over high mountainous regions. The Weather Research and Forecasting model (WRF) version 3.9 has been used to investigate the performance of Four-Dimensional Variational data assimilation (4D-Var) on Three-Dimensional Variational data assimilation (3D-Var) by considering two extreme snowfall events (23–26 January 2017 and 05–08 February 2019) over the Western Himalaya (WH). The result shows that the 4D-Var performed better than the 3D-Var for both the events by analyzing domain-averaged error and sensitivity parameter analysis. The initial state model variable’s domain-averaged error analysis revealed that 4D-Var has great potential to improve the initial conditions than the 3D-Var from lower to the upper atmosphere. Sensitivity parameter analysis also supports 4D-Var has more sensitive than the 3D-var especially in the lower and upper atmosphere by changing temperature and moisture fields along with winds circulations. From statistical skill scores analysis, 4D-Var performed well to reproduce the extreme snowfall events than the 3D-Var over WH. |
---|---|
ISSN: | 1976-7633 1976-7951 |
DOI: | 10.1007/s13143-020-00216-z |