고차원 자료의 비지도 부분공간 이상치 탐지기법에 대한 요약 연구
Detecting outliers among high-dimensional data encounters a challenging problem of screening the variables since relevant information is often contained in only a few of the variables. Otherwise, when a number of irrelevant variables are included in the data, the distances between all observations t...
Gespeichert in:
Veröffentlicht in: | Ŭngyong tʻonggye yŏnʼgu 2021, 34(3), , pp.507-521 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Detecting outliers among high-dimensional data encounters a challenging problem of screening the variables since relevant information is often contained in only a few of the variables. Otherwise, when a number of irrelevant variables are included in the data, the distances between all observations tend to become similar which leads to making the degree of outlierness of all observations alike. The subspace outlier detection method overcomes the problem by measuring the degree of outlierness of the observation based on the relevant subsets of the entire variables. In this paper, we survey recent subspace outlier detection techniques, classifying them into three major types according to the subspace selection method. And we summarize the techniques of each type based on how to select the relevant subspaces and how to measure the degree of outlierness. In addition, we introduce some computing tools for implementing the subspace outlier detection techniques and present results from the simulation study and real data analysis. 고차원 자료에서 이상치를 탐지하기 위해서는 변수를 선별해야 할 필요성이 있다. 이상치 탐지에 적합한 정보가 종종 일부 변수에만 포함되어 있기 때문이다. 많은 수의 부적합한 변수가 자료에 포함될 경우 모든 관측치의 거리가 비슷해지는 집중효과가 발생하고 이로 인해 모든 관측치의 이상정도가 비슷해지는 문제가 발생하게 된다. 부분공간 이상치 탐지기법은 전체 변수 중 이상치 탐지에 적합한 변수들의 집합을 선별하여 관측치의 이상정도를 측정함으로써 이러한 문제를 극복한다. 본 논문은 대표적인 부분공간 이상치 탐지기법을 부분공간 선정 방식에 따라 세가지 유형으로 분류하고 각 유형에 속한 방법론을 부분공간 선정 기준과 이상 정도 측정 방식에 따라 요약한다. 더하여, 부분공간 이상치 탐지기법들을 적용할 수 있는 컴퓨팅 프로그램을 소개하고 집중효과에 대한 간단한 가상 실험과 자료 분석 결과를 제시한다. |
---|---|
ISSN: | 1225-066X 2383-5818 |