Riesz and Tight Wavelet Frame Sets in Locally Compact Abelian Groups

In this paper, we attempt to obtain sufficient conditions for the existence of tight wavelet frame sets in locally compact abelian groups. The condition is generated by modulating a collection of characteristic functions that correspond to a generalized shift-invariant system via the Fourier transfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kyungpook mathematical journal 2021, 61(2), , pp.371-381
Hauptverfasser: Arvind Kumar Sinha, Radhakrushna Sahoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we attempt to obtain sufficient conditions for the existence of tight wavelet frame sets in locally compact abelian groups. The condition is generated by modulating a collection of characteristic functions that correspond to a generalized shift-invariant system via the Fourier transform. We present two approaches (for station ary and non-stationary wavelets) to construct the scaling function for L2(G) and, using the scaling function, we construct an orthonormal wavelet basis for L2(G). We propose an open problem related to the extension principle for Riesz wavelets in locally compact abelian groups. KCI Citation Count: 0
ISSN:1225-6951
0454-8124
DOI:10.5666/KMJ.2021.61.2.371