Siderophore-producing rhizobacteria reduce heavy metal-induced oxidative stress in Panax ginseng Meyer

Panax ginseng is one of the most important medicinal plants and is usually harvested after 5 to 6 years of cultivation in Korea. Heavy metal (HM) exposure is a type of abiotic stress that can induce oxidative stress and decrease the quality of the ginseng crop. Siderophore-producing rhizobacteria (S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ginseng research 2021, 45(2), , pp.218-227
Hauptverfasser: Huo, Yue, Kang, Jong Pyo, Ahn, Jong Chan, Kim, Yeon Ju, Piao, Chun Hong, Yang, Dong Uk, Yang, Deok Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Panax ginseng is one of the most important medicinal plants and is usually harvested after 5 to 6 years of cultivation in Korea. Heavy metal (HM) exposure is a type of abiotic stress that can induce oxidative stress and decrease the quality of the ginseng crop. Siderophore-producing rhizobacteria (SPR) may be capable of bioremediating HM contamination. Several isolates from ginseng rhizosphere were evaluated by in vitro screening of their plant growth-promoting traits and HM resistance. Subsequently, in planta (pot tests) and in vitro (medium tests) were designed to investigate the SPR ability to reduce oxidative stress and enhance HM resistance in P. ginseng inoculated with the SPR candidate. In vitro tests revealed that the siderophore-producing Mesorhizobium panacihumi DCY119T had higher HM resistance than the other tested isolates and was selected as the SPR candidate. In the planta experiments, 2-year-old ginseng seedlings exposed to 25 mL (500 mM) Fe solution had lower biomass and higher reactive oxygen species level than control seedlings. In contrast, seedlings treated with 108 CFU/mL DCY119T for 10 minutes had higher biomass and higher levels of antioxidant genes and nonenzymatic antioxidant chemicals than untreated seedlings. When Fe concentration in the medium was increased, DCY119T can produce siderophores and scavenge reactive oxygen species to reduce Fe toxicity in addition to providing indole-3-acetic acid to promote seedling growth, thereby conferring inoculated ginseng with HM resistance. It was confirmed that SPR DCY119T can potentially be used for bioremediation of HM contamination.
ISSN:1226-8453
2093-4947
DOI:10.1016/j.jgr.2019.12.008