On the structure of zero-divisor elements in a near-ring of skew formal power series

The main purpose of this paper is to study the zero-divisor properties of the zero-symmetric near-ring of skew formal power series $ R_{0}[[x;\alpha]] $, where $ R $ is a symmetric, $ \alpha $-compatible and right Noetherian ring. It is shown that if $ R $ is reduced, then the set of all zero-diviso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2021, 36(2), , pp.197-207
Hauptverfasser: Abdollah Alhevaz, Ebrahim Hashemi, Fatemeh Shokuhifar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main purpose of this paper is to study the zero-divisor properties of the zero-symmetric near-ring of skew formal power series $ R_{0}[[x;\alpha]] $, where $ R $ is a symmetric, $ \alpha $-compatible and right Noetherian ring. It is shown that if $ R $ is reduced, then the set of all zero-divisor elements of $ R_{0}[[x;\alpha]] $ forms an ideal of $ R_{0}[[x;\alpha]] $ if and only if $ Z(R) $ is an ideal of $ R $. Also, if $ R $ is a non-reduced ring and $ ann_{R}( a-b)\cap Nil(R)\neq 0 $ for each $ a,b\in Z(R) $, then $ Z\big(R_{0}[[x;\alpha]]\big)$ is an ideal of $ R_{0}[[x;\alpha]] $. Moreover, if $ R $ is a non-reduced right Noetherian ring and $ Z\big(R_{0}[[x;\alpha]]\big)$ forms an ideal, then $ ann_{R}( a-b)\cap Nil(R)\neq 0 $ for each $ a,b\in Z(R) $. Also, it is proved that the only possible diameters of the zero-divisor graph of $R_{0}[[x;\alpha]]$ is 2 and 3. KCI Citation Count: 0
ISSN:1225-1763
2234-3024
DOI:10.4134/CKMS.c190433