Dualities of variable anisotropic Hardy spaces and boundedness of singular integral operators
Let $A$ be an expansive dilation on $\mathbb{R}^n$, and $p(\cdot):\mathbb{R}^n\rightarrow(0,\,\infty)$ be a variable exponent function satisfying the globally log-H\"{o}lder continuous condition. Let $H^{p(\cdot)}_A({\mathbb {R}}^n)$ be the variable anisotropic Hardy space defined via the non-t...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2021, 58(2), , pp.365-384 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $A$ be an expansive dilation on $\mathbb{R}^n$, and $p(\cdot):\mathbb{R}^n\rightarrow(0,\,\infty)$ be a variable exponent function satisfying the globally log-H\"{o}lder continuous condition. Let $H^{p(\cdot)}_A({\mathbb {R}}^n)$ be the variable anisotropic Hardy space defined via the non-tangential grand maximal function. In this paper, the author obtains the boundedness of anisotropic convolutional $\delta$-type Calder\'on-Zygmund operators from $H^{p(\cdot)}_{A}(\mathbb{R}^n)$ to $L^{p(\cdot)}(\mathbb{R}^n)$ or from $H^{p(\cdot)}_{A}(\mathbb{R}^n)$ to itself. In addition, the author also obtains the duality between $H^{p(\cdot)}_ A(\mathbb{R}^n)$ and the anisotropic Campanato spaces with variable exponents. KCI Citation Count: 1 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b200301 |