Dualities of variable anisotropic Hardy spaces and boundedness of singular integral operators

Let $A$ be an expansive dilation on $\mathbb{R}^n$, and $p(\cdot):\mathbb{R}^n\rightarrow(0,\,\infty)$ be a variable exponent function satisfying the globally log-H\"{o}lder continuous condition. Let $H^{p(\cdot)}_A({\mathbb {R}}^n)$ be the variable anisotropic Hardy space defined via the non-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2021, 58(2), , pp.365-384
1. Verfasser: Wenhua Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $A$ be an expansive dilation on $\mathbb{R}^n$, and $p(\cdot):\mathbb{R}^n\rightarrow(0,\,\infty)$ be a variable exponent function satisfying the globally log-H\"{o}lder continuous condition. Let $H^{p(\cdot)}_A({\mathbb {R}}^n)$ be the variable anisotropic Hardy space defined via the non-tangential grand maximal function. In this paper, the author obtains the boundedness of anisotropic convolutional $\delta$-type Calder\'on-Zygmund operators from $H^{p(\cdot)}_{A}(\mathbb{R}^n)$ to $L^{p(\cdot)}(\mathbb{R}^n)$ or from $H^{p(\cdot)}_{A}(\mathbb{R}^n)$ to itself. In addition, the author also obtains the duality between $H^{p(\cdot)}_ A(\mathbb{R}^n)$ and the anisotropic Campanato spaces with variable exponents. KCI Citation Count: 1
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b200301