A note on vector-valued Eisenstein series of weight $3/2

Vector-valued Eisenstein series of weight $3/2$ are often not holomorphic. In this paper we prove that, for an even lattice $\lat L$, if there exists an odd prime $p$ such that $\lat L$ is local $p$-maximal and the determinant of $\lat L$ is divisible by $p^{2}$, then the Eisenstein series of weight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2021, 58(2), , pp.507-514
1. Verfasser: Ran Xiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vector-valued Eisenstein series of weight $3/2$ are often not holomorphic. In this paper we prove that, for an even lattice $\lat L$, if there exists an odd prime $p$ such that $\lat L$ is local $p$-maximal and the determinant of $\lat L$ is divisible by $p^{2}$, then the Eisenstein series of weight $3/2$ attached to the discriminant form of $\lat L$ is holomorphic. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b200375