Heat transfer characteristics of redan structure in large-scale test facility STELLA-2
The construction of STELLA-2 facility is on-going to demonstrate the safety system of PGSFR and to provide comprehensive understanding of transient behavior under DBEs. Considering that most events are single-phase natural circulation flow with slow transient, STELLA-2 was designed with reduced-heig...
Gespeichert in:
Veröffentlicht in: | Nuclear engineering and technology 2021, 53(4), , pp.1109-1118 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The construction of STELLA-2 facility is on-going to demonstrate the safety system of PGSFR and to provide comprehensive understanding of transient behavior under DBEs. Considering that most events are single-phase natural circulation flow with slow transient, STELLA-2 was designed with reduced-height of 1/5 length scale. The ratio of volume to surface area in the vessel can relatively increase resulting in excessive heat transfer. Therefore, a steady-state thermal-hydraulic analysis was performed and the effect of design change to reduce the heat transfer through redan was investigated. The heat transfer through single wall redan in STELLA-2 was 3% of the core power, comparable to 1% of the core power in PGSFR. By applying the insulated redan, about 70% of decrease effect was observed. The effect on transient behavior was also evaluated. The conclusion of this study was directly applied to the STELLA-2 design and the modified version is under construction. |
---|---|
ISSN: | 1738-5733 2234-358X |
DOI: | 10.1016/j.net.2020.09.006 |