Performance Enhancements in LiCl-H2O and LiBr-H2O Absorption Cooling Systems through an Advanced Exergetic Analysis

This research study compares the thermodynamic performance of 10 kW lithium chloride–water (LiCl–H2O) and lithium bromide–water (LiBr–H2O) absorption cooling systems through first and second law of thermodynamics. Further, the exergy degradations happening in each component have been split into unav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of air-conditioning and refrigeration 2021, 29(1), , pp.1-16
Hauptverfasser: Parth Mody, Jatin Patel, Nishant Modi, Bhargav Pandya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research study compares the thermodynamic performance of 10 kW lithium chloride–water (LiCl–H2O) and lithium bromide–water (LiBr–H2O) absorption cooling systems through first and second law of thermodynamics. Further, the exergy degradations happening in each component have been split into unavoidable and avoidable exergy degradations as well as endogenous and exogenous exergy degradations through advanced exergy analysis. Pressure–temperature–concentration (P–T –X) diagrams are drafted to clarify the real, ideal, and unavoidable cycles for LiCl–H2O and LiBr–H2O absorption cycles. Moreover, this paper exhibits the sensitivity of various system components towards the generator, condenser, and absorber temperature for both pairs. Energetic observation proves that LiCl–H2O pair is 10% more efficient as compared to LiBr–H2O pair. Exergetically, LiBr–H2O cycle struggles with additional (nearly 13.45%) exergy destruction than LiCl–H2O cycle. The major contribution (around 70% to 80%) of irreversibility comes from the generator and absorber. Comprehensively, the parametric partitions of irreversibility rate in each component provide broad indications to prioritize the system components for enhancements. KCI Citation Count: 0
ISSN:2010-1325
2010-1333
DOI:10.1142/S2010132521500073