적색광을 이용한 국화의 개화조절

BACKGROUND: The incandescent bulb and compact fluorescent lamp are widely using as a light sources for daylength extension of chrysanthemum. But, these light sources consume a lot of electricity and have short longevity. A light-emitting diode (LED) is a semi conductor light source. LEDs have many a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hanguk hwangyeong nonghak hoeji 2013, 32(2), , pp.123-127
Hauptverfasser: 홍성창, Seung Chang Hong, 권순익, Soon Ik Kwon, 김민경, Min Kyeong Kim, 채미진, Mi Jin Chae, 정구복, Goo Bok Jung, 소규호, Kyu Ho So
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND: The incandescent bulb and compact fluorescent lamp are widely using as a light sources for daylength extension of chrysanthemum. But, these light sources consume a lot of electricity and have short longevity. A light-emitting diode (LED) is a semi conductor light source. LEDs have many advantages over incandescent light sources including lower energy consumption, longer lifetime. In this study, we investigated the intensity of red light to control flowering of chrysanthemum (Dendranthema grandiflorum cv. “Shinma”) by using LEDs. METHODS AND RESULTS: The red (660 nm) and far-red (730 nm) light were irradiated subsequently to investigate photo-reversible flowering responses of chrysanthemum. The flowering of chrysanthemum was inhibited by night interruption with red light but subsequently irradiated far-red light induced the flowering of chrysanthemum. This photoreversibility, reversion of the inductive effect of a brief red light pulse by a subsequent far-red light pulse, is a property of photo responses regulated by the plant photoreceptor phytochrome B. Four different intensity of red light of 0.7, 1.4, 2.1, and 2.8μmol/m2/s (PAR) were irradiated at growth room in order to determine the threshold for floral inhibition of chrysanthemum. Over 1.4μmol/m2/s of the red lights irradiated chrysanthemums were not flowered. The plant length, fresh weight, number of leaves, and leaf area of chrysanthemum irradiated with red light were increased by 17%, 36%, 11%, and 48%, respectively, compared to those of compact fluorescent lamp. CONCLUSION(S): The red light and subsequential far-red light showed that the photoreversibility on flowering of chrysanthemum. The red light (1.4μmol/m2/s of red LEDs) and white light (50 Lux of compact fluorescent lamp) have the same effect on inhibition of flowering in chrysanthemum. Additionally, the red light increased the plant height and dry weight of chrysanthemum.
ISSN:1225-3537
2233-4173
DOI:10.5338/KJEA.2013.32.2.123