Evaluation on the Bond Capacity of the Fire-Protected FRP Bonded to Concrete Under High Temperature
To figure out the change in the reinforcing effect of FRP system used for the retrofit of RC beam when it is exposed to high temperature, it is required to evaluate not only the behavior of the entire beam, but also the bond performance at anchorage zone through a bond test according to the increase...
Gespeichert in:
Veröffentlicht in: | International journal of concrete structures and materials 2021, 15(2), 59, pp.145-168 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To figure out the change in the reinforcing effect of FRP system used for the retrofit of RC beam when it is exposed to high temperature, it is required to evaluate not only the behavior of the entire beam, but also the bond performance at anchorage zone through a bond test according to the increase of external temperature. Moreover, the study to find various fire-protection methods is necessary to prevent the epoxy from reaching the critical temperature during an exposure to high temperature. In this manner, the fire-resistance performances of externally bonded (EB) FRP and near-surface-mounted (NSM) FRP to concrete block were evaluated by high-temperature exposure tests after performing a fire-protection on the surface in this paper. Board-type insulation with mortar was considered for the fire-protection of FRP system. After the fire-protection of the FRPs bonded to concrete blocks, an increasing exposure temperature was applied to the specimens with keeping a constant shear bond stress between concrete and the FRP. Based on the result, the temperature when the bond strength of the FRP disappears was evaluated. In addition, a finite element analysis was performed to find a proper method for predicting the temperature variation of the epoxy which is fire-protected with board-type insulation during the increase of external temperature. As a result of the test, despite the same fire-protection, NSM specimens were able to resist 1.54–2.08 times higher temperature than EB specimens. In the design of fire-protection of FRP system with the board-type insulation, it is necessary to consider the transfer from sides as well as the face with FRP. If there is no insulation of FP boards on the sides, the epoxy easily reaches its critical temperature by the heat penetrated to the sides, and increasing the thickness of the FP board alone for the face with FRP does not increase the fire-resistance capacity. As a result of the FE analysis, the temperature variation at epoxy can be predicted using the analytical approach with the proper thermal properties of FP mortar and board. |
---|---|
ISSN: | 1976-0485 2234-1315 |
DOI: | 10.1186/s40069-020-00448-3 |