ON TRIGONOMETRICALLY QUASI-CONVEX FUNCTIONS
In this paper, we introduce and study the concept of trigono- metrically quasi-convex function. We prove Hermite-Hadamard type in- equalities for the newly introduced class of functions and obtain some new Hermite-Hadamard inequalities for functions whose rst derivative in absolute value, raised to...
Gespeichert in:
Veröffentlicht in: | Honam mathematical journal 2021, 43(1), , pp.130-140 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce and study the concept of trigono- metrically quasi-convex function. We prove Hermite-Hadamard type in- equalities for the newly introduced class of functions and obtain some new Hermite-Hadamard inequalities for functions whose rst derivative in absolute value, raised to a certain power which is greater than one, respectively at least one, is trigonometrically quasi-convex convex. We also extend our initial results to functions of several variables. Next, we point out some applications of our results to give estimates for the ap- proximation error of the integral the function in the trapezoidal formula. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-293X 2288-6176 |
DOI: | 10.5831/HMJ.2021.43.1.130 |