ON TRIGONOMETRICALLY QUASI-CONVEX FUNCTIONS

In this paper, we introduce and study the concept of trigono- metrically quasi-convex function. We prove Hermite-Hadamard type in- equalities for the newly introduced class of functions and obtain some new Hermite-Hadamard inequalities for functions whose rst derivative in absolute value, raised to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Honam mathematical journal 2021, 43(1), , pp.130-140
Hauptverfasser: Selim Numan, Imdat Iscan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce and study the concept of trigono- metrically quasi-convex function. We prove Hermite-Hadamard type in- equalities for the newly introduced class of functions and obtain some new Hermite-Hadamard inequalities for functions whose rst derivative in absolute value, raised to a certain power which is greater than one, respectively at least one, is trigonometrically quasi-convex convex. We also extend our initial results to functions of several variables. Next, we point out some applications of our results to give estimates for the ap- proximation error of the integral the function in the trapezoidal formula. KCI Citation Count: 0
ISSN:1225-293X
2288-6176
DOI:10.5831/HMJ.2021.43.1.130