ON THE GEOMETRY OF RATIONAL BÉZIER CURVES

The purpose of this paper is to assign a movable frame to an arbitrary point of a rational Bézier curve on the 2-sphere S2 in Euclidean 3-space R3 to provide a better understanding of the geometry of the curve. Especially, we obtain the formula of geodesic curvature for a quadratic rational Bézier c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Honam mathematical journal 2021, 43(1), , pp.88-99
Hauptverfasser: Ayse Yilmaz Ceylan, Tunahan Turhan, Gozde Ozkan Tukel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this paper is to assign a movable frame to an arbitrary point of a rational Bézier curve on the 2-sphere S2 in Euclidean 3-space R3 to provide a better understanding of the geometry of the curve. Especially, we obtain the formula of geodesic curvature for a quadratic rational Bézier curve that allows a curve to be characterized on the surface. Moreover, we give some important results and relations for the Darboux frame and geodesic curvature of a such curve. Then, in specific case, given characterizations for the quadratic rational Bézier curve are illustrated on a unit 2-sphere. KCI Citation Count: 0
ISSN:1225-293X
2288-6176
DOI:10.5831/HMJ.2021.43.1.88