Extended Gradient-based Iterative Algorithm for Bilinear State-space Systems with Moving Average Noises by Using the Filtering Technique

This paper develops a filtering-based iterative algorithm for the combined parameter and state estimation problems of bilinear state-space systems, taking account of the moving average noise. In order to deal with the correlated noise and unknown states in the parameter estimation, a filter is chose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems 2021, Automation, and Systems, 19(4), , pp.1597-1606
Hauptverfasser: Liu, Siyu, Zhang, Yanliang, Xu, Ling, Ding, Feng, Alsaedi, Ahmed, Hayat, Tasawar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops a filtering-based iterative algorithm for the combined parameter and state estimation problems of bilinear state-space systems, taking account of the moving average noise. In order to deal with the correlated noise and unknown states in the parameter estimation, a filter is chosen to filter the input-output data disturbed by colored noise and a Kalman state observer (KSO) is designed to estimate the states by minimizing the trace of the error covariance matrix. Then, a KSO extended gradient-based iterative (KSO-EGI) algorithm and a filtering based KSO-EGI algorithm are presented to estimate the unknown states and unknown parameters jointly by the iterative estimation idea. The simulation results demonstrate the effectiveness of the proposed algorithms.
ISSN:1598-6446
2005-4092
DOI:10.1007/s12555-019-0831-9