Extended Gradient-based Iterative Algorithm for Bilinear State-space Systems with Moving Average Noises by Using the Filtering Technique
This paper develops a filtering-based iterative algorithm for the combined parameter and state estimation problems of bilinear state-space systems, taking account of the moving average noise. In order to deal with the correlated noise and unknown states in the parameter estimation, a filter is chose...
Gespeichert in:
Veröffentlicht in: | International journal of control, automation, and systems 2021, Automation, and Systems, 19(4), , pp.1597-1606 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper develops a filtering-based iterative algorithm for the combined parameter and state estimation problems of bilinear state-space systems, taking account of the moving average noise. In order to deal with the correlated noise and unknown states in the parameter estimation, a filter is chosen to filter the input-output data disturbed by colored noise and a Kalman state observer (KSO) is designed to estimate the states by minimizing the trace of the error covariance matrix. Then, a KSO extended gradient-based iterative (KSO-EGI) algorithm and a filtering based KSO-EGI algorithm are presented to estimate the unknown states and unknown parameters jointly by the iterative estimation idea. The simulation results demonstrate the effectiveness of the proposed algorithms. |
---|---|
ISSN: | 1598-6446 2005-4092 |
DOI: | 10.1007/s12555-019-0831-9 |