Exergy-based Energy Efficiency Evaluation Model for Machine Tools Considering Thermal Stability

Machine tools, as the extensively used basic equipment of manufacturing industry, are characterized by intensive and inefficient energy consumption. With the launch and implementation of ISO 14955-1, energy efficiency has become an important criterion for machine tool evaluation. However, most ongoi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Precision Engineering and Manufacturing-Green Technology 2021, 8(2), , pp.423-434
Hauptverfasser: Li, Benjie, Cao, Huajun, Hon, Bernard, Liu, Lei, Gao, Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine tools, as the extensively used basic equipment of manufacturing industry, are characterized by intensive and inefficient energy consumption. With the launch and implementation of ISO 14955-1, energy efficiency has become an important criterion for machine tool evaluation. However, most ongoing research on energy efficiency evaluation of machine tools emphasizes on workpiece material removal energy efficiency and rarely considers energy consumption needed to ensure machining accuracy and accuracy consistency, especially energy consumption for thermal stability control of machine tools. In light of this, an exergy analysis based approach is presented to assess the comprehensive energy efficiency of machine tools, including energy consumption for material removal and thermal stability control. The key performance indexes of exergy efficiency, exergy destruction, and specific exergy consumption are analyzed. The feasibility of the proposed approach was demonstrated by a case study, in which the comprehensive energy efficiency of a machine tool was found to be 21.57% instead of 14.38% of material removal energy efficiency. The proposed method is more effective to evaluate the comprehensive energy efficiency, to support designers to design high-efficient machine tool and users to operate machine tool for green and precision machining.
ISSN:2288-6206
2198-0810
DOI:10.1007/s40684-020-00204-8