A graded minimal free resolution of the $m$-th order symbolic power of a star configuration in $\P^n

In \cite{S:3} the author finds a graded minimal free resolution of the $2$-nd order symbolic power of a star configuration in $\P^n$ of any codimension $r$. In this paper, we find that of any $m$-th order symbolic power of a star configuration in $\P^n$ of codimension $2$, which generalizes the resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2021, 58(2), , pp.283-308
Hauptverfasser: 박정필, 신용수
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In \cite{S:3} the author finds a graded minimal free resolution of the $2$-nd order symbolic power of a star configuration in $\P^n$ of any codimension $r$. In this paper, we find that of any $m$-th order symbolic power of a star configuration in $\P^n$ of codimension $2$, which generalizes the result of Galetto, Geramita, Shin, and Van Tuyl in \cite[Theorem 5.3]{GGSV:1}. Furthermore, we extend it to the $m$-th order symbolic power of a star configuration in $\P^n$ of any codimension $r$ for $m=3,4$, which also generalizes the result of Biermann et al. in \cite[Corollaries 4.6 and 5.7]{BDGMNORS}. We also suggest how to find a graded minimal free resolution of the $m$-th order symbolic power of a star configuration in $\P^n$ of any codimension $r$ for $m\ge 5$. KCI Citation Count: 1
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.j190739