Neuro-fuzzy fatigue life assessment using the wavelet-based multifractality parameters
This study aims to establish a fatigue life predictive model based on multifractality of road excitations using neuro-fuzzy method to assess the durability of suspension spring. Traditional durability analysis in time domain is complicated and time-consuming due to the needs of large data amount. Th...
Gespeichert in:
Veröffentlicht in: | Journal of mechanical science and technology 2021, 35(2), , pp.439-447 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aims to establish a fatigue life predictive model based on multifractality of road excitations using neuro-fuzzy method to assess the durability of suspension spring. Traditional durability analysis in time domain is complicated and time-consuming due to the needs of large data amount. Thus, it is an idea to adopt an adaptive neuro-fuzzy inference system (ANFIS) for relating the performance of coil spring to the multifractal properties of road excitations, giving a meaningful fatigue life prediction. Different membership function numbers were tested to obtain the optimum membership function number. During the data training process, the checking data was used to test the trained model each Epoch of training for overfitting detection. As a result, the Morrow-based fatigue life prediction model was found to give the most suitable result with three membership functions. The SWT-based model needed five membership functions due to nonlinear properties in the SWT-based fatigue life data. Training process of Morrow-based-ANFIS was stopped at Epoch 8 given its lowest checking root-mean-square-error of 0.6953. SWT-based model recorded a higher error of 0.7940. The neuro-fuzzy models gave accurate fatigue life predictions with 96 % of the data distributed within the acceptance boundary, hence, contributing to an acceptable assessment of coil spring fatigue life based on load multifractality. This study had shown a nonlinear relationship between road multifractality and durability performance of coil spring. Multifractality had been proven an important feature to characterise various road excitations for durability prediction. |
---|---|
ISSN: | 1738-494X 1976-3824 |
DOI: | 10.1007/s12206-021-0102-6 |