ANNIHILATING PROPERTY OF ZERO-DIVISORS
We discuss the condition that every nonzero right annihilator of an element contains a nonzero ideal, as a generalization of the insertion-of-factors-property. A ring with such condition is called {\it right AP}. We prove that a ring $R$ is right AP if and only if $D_n(R)$ is right AP for every $n\g...
Gespeichert in:
Veröffentlicht in: | Communications of the Korean Mathematical Society 2021, 36(1), , pp.27-39 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss the condition that every nonzero right annihilator of an element contains a nonzero ideal, as a generalization of the insertion-of-factors-property. A ring with such condition is called {\it right AP}. We prove that a ring $R$ is right AP if and only if $D_n(R)$ is right AP for every $n\geq 2$, where $D_n(R)$ is the ring of $n$ by $n$ upper triangular matrices over $R$ whose diagonals are equal. Properties of right AP rings are investigated in relation to nilradicals, prime factor rings and minimal order. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-1763 2234-3024 |
DOI: | 10.4134/CKMS.c200176 |