ANNIHILATING PROPERTY OF ZERO-DIVISORS

We discuss the condition that every nonzero right annihilator of an element contains a nonzero ideal, as a generalization of the insertion-of-factors-property. A ring with such condition is called {\it right AP}. We prove that a ring $R$ is right AP if and only if $D_n(R)$ is right AP for every $n\g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2021, 36(1), , pp.27-39
Hauptverfasser: 정다운, 이창익, 이양, 남상복, 류성주, 성효진, 윤상조
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss the condition that every nonzero right annihilator of an element contains a nonzero ideal, as a generalization of the insertion-of-factors-property. A ring with such condition is called {\it right AP}. We prove that a ring $R$ is right AP if and only if $D_n(R)$ is right AP for every $n\geq 2$, where $D_n(R)$ is the ring of $n$ by $n$ upper triangular matrices over $R$ whose diagonals are equal. Properties of right AP rings are investigated in relation to nilradicals, prime factor rings and minimal order. KCI Citation Count: 0
ISSN:1225-1763
2234-3024
DOI:10.4134/CKMS.c200176