A new class of Riemannian metrics on tangent bundle of a Riemannian manifold

The class of isotropic almost complex structures, $J_{\delta , \sigma}$, define a class of Riemannian metrics, $g_{\delta , \sigma}$, on the tangent bundle of a Riemannian manifold which are a generalization of the Sasaki metric. This paper characterizes the metrics $g_{\delta , 0}$ using the geomet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2020, 35(4), , pp.1255-1267
Hauptverfasser: Amir Baghban, Saeed Hashemi Sababe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The class of isotropic almost complex structures, $J_{\delta , \sigma}$, define a class of Riemannian metrics, $g_{\delta , \sigma}$, on the tangent bundle of a Riemannian manifold which are a generalization of the Sasaki metric. This paper characterizes the metrics $g_{\delta , 0}$ using the geometry of tangent bundle. As a by-product, some integrability results will be reported for $J_{\delta , \sigma}$. KCI Citation Count: 0
ISSN:1225-1763
2234-3024
DOI:10.4134/CKMS.c200114