V-REP-based navigation of automated wheeled robot between obstacles using PSO-tuned feedforward neural network

Abstract This paper describes the navigation of an automated Pioneer P3-DX wheeled robot between obstacles using particle swarm optimization (PSO) algorithm tuned feedforward neural network (FNN). This PSO algorithm minimizes the mean square error between the actual and predicted values of the FNN....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Computational Design and Engineering 2020, 7(4), , pp.427-434
Hauptverfasser: Pandey, Anish, Panwar, Vikas Singh, Hasan, Md Ehtesham, Parhi, Dayal R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract This paper describes the navigation of an automated Pioneer P3-DX wheeled robot between obstacles using particle swarm optimization (PSO) algorithm tuned feedforward neural network (FNN). This PSO algorithm minimizes the mean square error between the actual and predicted values of the FNN. In this work, 2 separate DC motors and 16 ultrasonic sensors have been used for making differential drive steering angle and for collecting the distance from obstacles, respectively. The proposed without tuned FNN and PSO-tuned FNN receives obstacle's distance as inputs form ultrasonic sensors and control the steering angle of a differential drive of automated Pioneer P3-DX wheeled robot as output. We have compared the results between without tuned FNN and PSO-tuned FNN, and it has been found that PSO-tuned FNN gives a better trajectory and takes less distance to reach the target. Virtual Robot Experimentation Platform software has been used to design the real-time simulation results. A comparative study between without tuned FNN and PSO-tuned FNN verifies the effectiveness of PSO-tuned FNN for automated Pioneer P3-DX wheeled robot navigation. Also, we have compared this winner PSO-tuned FNN to the previously developed PSO-optimized Fuzzy Logic Controller navigational technique to show the authenticity and real-time implementation of PSO-tuned FNN. Graphical Abstract Graphical Abstract
ISSN:2288-5048
2288-4300
2288-5048
DOI:10.1093/jcde/qwaa035