Intelligent fault diagnosis of rolling bearing and gear system under fluctuating load conditions using image processing technique

Health monitoring of a rotating machine is mainly done by investigation of the vibration patterns generated by the machine. Leveraging the fact that faults occurring in different parts of a machine generate unique fault signatures, a fault diagnosis methodology is proposed that can identify nine dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2020, 34(10), , pp.4107-4115
Hauptverfasser: Jha, Rakesh Kumar, Swami, Preety D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Health monitoring of a rotating machine is mainly done by investigation of the vibration patterns generated by the machine. Leveraging the fact that faults occurring in different parts of a machine generate unique fault signatures, a fault diagnosis methodology is proposed that can identify nine different healthy and faulty categories under varying load and noisy conditions. Neural network is employed for classification of faults in various categories. The robustness of features such as semivariance, kurtosis and Shannon entropy make them strong candidates to train the artificial neural network. The matching of vibration textural patterns with wave atom basis functions ensures removal of noise. As a result, the enhanced features used to train the neural network have led to high accuracy in classification. The algorithm is tested at various load conditions for both bearing and gear fault experimental data sets acquired by machinery fault simulator in laboratory. Simulation results show high degree of accuracy for both bearing and gear fault diagnosis under no load to heavy load noisy conditions.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-020-0903-z