Real Hypersurfaces with Invariant Normal Jacobi Operator in the Complex Hyperbolic Quadric
We introduce the notion of Lie invariant normal Jacobi operators for real hypersurfaces in the complex hyperbolic quadric Qm∗ = SOom,2/SOmSO2. The invariant normal Jacobi operator implies that the unit normal vector field N becomes $\frak A$-principal or A-isotropic. Then in each case, we give a com...
Gespeichert in:
Veröffentlicht in: | Kyungpook mathematical journal 2020, 60(3), , pp.551-570 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the notion of Lie invariant normal Jacobi operators for real hypersurfaces in the complex hyperbolic quadric Qm∗ = SOom,2/SOmSO2. The invariant normal Jacobi operator implies that the unit normal vector field N becomes $\frak A$-principal or A-isotropic. Then in each case, we give a complete classification of real hypersurfaces in Qm∗= SOom,2/SOmSO2 with Lie invariant normal Jacobi operators. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-6951 0454-8124 |
DOI: | 10.5666/KMJ.2020.60.3.551 |