Real Hypersurfaces with Invariant Normal Jacobi Operator in the Complex Hyperbolic Quadric

We introduce the notion of Lie invariant normal Jacobi operators for real hypersurfaces in the complex hyperbolic quadric Qm∗ = SOom,2/SOmSO2. The invariant normal Jacobi operator implies that the unit normal vector field N becomes $\frak A$-principal or A-isotropic. Then in each case, we give a com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kyungpook mathematical journal 2020, 60(3), , pp.551-570
Hauptverfasser: 정임순, 김규종
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the notion of Lie invariant normal Jacobi operators for real hypersurfaces in the complex hyperbolic quadric Qm∗ = SOom,2/SOmSO2. The invariant normal Jacobi operator implies that the unit normal vector field N becomes $\frak A$-principal or A-isotropic. Then in each case, we give a complete classification of real hypersurfaces in Qm∗= SOom,2/SOmSO2 with Lie invariant normal Jacobi operators. KCI Citation Count: 0
ISSN:1225-6951
0454-8124
DOI:10.5666/KMJ.2020.60.3.551