On Diameter, Cyclomatic Number and Inverse Degree of Chemical Graphs
Let G be a chemical graph with vertex set {v1, v1, . . . , vn} and degree sequence d(G) = (degG(v1), degG(v2), . . . , degG(vn)). The inverse degree, R(G) of G is defined as R(G) = Pni=11degG(vi). The cyclomatic number of G is defined as γ = m − n + k, where m, n and k are the number of edges, verti...
Gespeichert in:
Veröffentlicht in: | Kyungpook mathematical journal 2020, 60(3), , pp.467-475 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a chemical graph with vertex set {v1, v1, . . . , vn} and degree sequence d(G) = (degG(v1), degG(v2), . . . , degG(vn)). The inverse degree, R(G) of G is defined as R(G) = Pni=11degG(vi). The cyclomatic number of G is defined as γ = m − n + k, where m, n and k are the number of edges, vertices and components of G, respectively. In this paper, some upper bounds on the diameter of a chemical graph in terms of its inverse degree are given. We also obtain an ordering of connected chemical graphs with respect to the inverse degree. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-6951 0454-8124 |
DOI: | 10.5666/KMJ.2020.60.3.467 |