On a class of perfect rings
A module $M$ is called ss-semilocal if every submodule $U$ of $M$ has a weak supplement $V$ in $M$ such that $U \cap V$ is semisimple. In this paper, we provide the basic properties of ss-semilocal modules. In particular, it is proved that, for a ring $R$, $_{R}R$ is $ss$-semilocal if and only if ev...
Gespeichert in:
Veröffentlicht in: | Honam mathematical journal 2020, 42(3), , pp.591-600 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A module $M$ is called ss-semilocal if every submodule $U$ of $M$ has a weak supplement $V$ in $M$ such that $U \cap V$ is semisimple.
In this paper, we provide the basic properties of ss-semilocal modules.
In particular, it is proved that, for a ring $R$, $_{R}R$ is $ss$-semilocal if and only if every left $R$-module is $ss$-semilocal if and only if $R$ is semilocal and $Rad(R)\subseteq Soc(_{R}R)$.
We define projective $ss$-covers and prove the rings with the property that every (simple) module has a projective $ss$-cover are $ss$-semilocal. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-293X 2288-6176 |
DOI: | 10.5831/HMJ.2020.42.3.591 |