On a class of perfect rings

A module $M$ is called ss-semilocal if every submodule $U$ of $M$ has a weak supplement $V$ in $M$ such that $U \cap V$ is semisimple. In this paper, we provide the basic properties of ss-semilocal modules. In particular, it is proved that, for a ring $R$, $_{R}R$ is $ss$-semilocal if and only if ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Honam mathematical journal 2020, 42(3), , pp.591-600
Hauptverfasser: Arzu Olgun, Ergul Turkmen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A module $M$ is called ss-semilocal if every submodule $U$ of $M$ has a weak supplement $V$ in $M$ such that $U \cap V$ is semisimple. In this paper, we provide the basic properties of ss-semilocal modules. In particular, it is proved that, for a ring $R$, $_{R}R$ is $ss$-semilocal if and only if every left $R$-module is $ss$-semilocal if and only if $R$ is semilocal and $Rad(R)\subseteq Soc(_{R}R)$. We define projective $ss$-covers and prove the rings with the property that every (simple) module has a projective $ss$-cover are $ss$-semilocal. KCI Citation Count: 0
ISSN:1225-293X
2288-6176
DOI:10.5831/HMJ.2020.42.3.591