Purification of Pig Muscle Stem Cells Using Magnetic-Activated Cell Sorting (MACS) Based on the Expression of Cluster of Differentiation 29 (CD29)
The muscle stem cells of domestic animals are of interest to researchers in the food and biotechnology industries for the production of cultured meat. For producing cultured meat, it is crucial for muscle stem cells to be efficiently isolated and stably maintained in vitro on a large scale. In the p...
Gespeichert in:
Veröffentlicht in: | Food science of animal resources 2020, 40(5), , pp.852-859 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The muscle stem cells of domestic animals are of interest to researchers in the
food and biotechnology industries for the production of cultured meat. For
producing cultured meat, it is crucial for muscle stem cells to be efficiently
isolated and stably maintained
in vitro
on a large scale. In
the present study, we aimed to optimize the method for the enrichment of pig
muscle stem cells using a magnetic-activated cell sorting (MACS) system. Pig
muscle stem cells were collected from the
biceps femoris
muscles of 14 d-old pigs of three breeds [Landrace×Yorkshire×Duroc
(LYD), Berkshire, and Korean native pigs] and cultured in skeletal muscle growth
medium-2 (SkGM-2) supplemented with epidermal growth factor (EGF),
dexamethasone, and a p38 inhibitor (SB203580). Approximately 30% of total
cultured cells were nonmyogenic cells in the absence of purification in our
system, as determined by immunostaining for cluster of differentiation 56 (CD56)
and CD29, which are known markers of muscle stem cells. Interestingly, following
MACS isolation using the CD29 antibody, the proportion of
CD56
+
/CD29
+
muscle stem cells was
significantly increased (91.5±2.40%), and the proportion of CD56
single-positive nonmyogenic cells was dramatically decreased. Furthermore, we
verified that this method worked well for purifying muscle stem cells in the
three pig breeds. Accordingly, we found that CD29 is a valuable candidate among
the various marker genes for the isolation of pig muscle stem cells and
developed a simple sorting method based on a single antibody to this
protein. |
---|---|
ISSN: | 2636-0772 2636-0780 |
DOI: | 10.5851/kosfa.2020.e51 |