Evaluation of the mechanical properties and clinical efficacy of biphasic calcium phosphate-added collagen membrane in ridge preservation
This study aimed to evaluate the biocompatibility and the mechanical properties of ultraviolet (UV) cross-linked and biphasic calcium phosphate (BCP)-added collagen membranes and to compare the clinical results of ridge preservation to those obtained using chemically cross-linked collagen membranes....
Gespeichert in:
Veröffentlicht in: | Journal of periodontal & implant science 2020, 50(4), , pp.238-250 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aimed to evaluate the biocompatibility and the mechanical properties of ultraviolet (UV) cross-linked and biphasic calcium phosphate (BCP)-added collagen membranes and to compare the clinical results of ridge preservation to those obtained using chemically cross-linked collagen membranes.
The study comprised an
test and a clinical trial for membrane evaluation. BCP-added collagen membranes with UV cross-linking were prepared. In the
test, scanning electron microscopy, a collagenase assay, and a tensile strength test were performed. The clinical trial involved 14 patients undergoing a ridge preservation procedure. All participants were randomly divided into the test group, which received UV cross-linked membranes (n=7), and the control group, which received chemically cross-linked membranes (n=7). BCP bone substitutes were used for both the test group and the control group. Cone-beam computed tomography (CBCT) scans were performed and alginate impressions were taken 1 week and 3 months after surgery. The casts were scanned via an optical scanner to measure the volumetric changes. The results were analyzed using the nonparametric Mann-Whitney
test.
The fastest degradation rate was found in the collagen membranes without the addition of BCP. The highest enzyme resistance and the highest tensile strength were found when the collagen-to-BCP ratio was 1:1. There was no significant difference in dimensional changes in the 3-dimensional modeling or CBCT scans between the test and control groups in the clinical trial (
>0.05).
The addition of BCP and UV cross-linking improved the biocompatibility and the mechanical strength of the membranes. Within the limits of the clinical trial, the sites grafted using BCP in combination with UV cross-linked and BCP-added collagen membranes (test group) did not show any statistically significant difference in terms of dimensional change compared with the control group. |
---|---|
ISSN: | 2093-2278 2093-2286 |
DOI: | 10.5051/JPIS.2001080054 |