Improvement of aseismic performance of a PGSFR PHTS pump
A design study was performed to improve the limit aseismic performance (LSP) of a primary heat transport system (PHTS) pump. This pump is part of the primary equipment of a prototype generation IV sodium-cooled fast reactor (PGSFR). The LSP is the maximum allowable seismic load that still ensures st...
Gespeichert in:
Veröffentlicht in: | Nuclear engineering and technology 2020, 52(8), , pp.1847-1861 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A design study was performed to improve the limit aseismic performance (LSP) of a primary heat transport system (PHTS) pump. This pump is part of the primary equipment of a prototype generation IV sodium-cooled fast reactor (PGSFR). The LSP is the maximum allowable seismic load that still ensures structural integrity. To calculate the LSP of the PHTS pump, a structural analysis model of the pump was developed and its dynamic characteristics were obtained by modal analysis. The floor response spectrum (FRS) initiated from a safety shutdown earthquake (SSE), 0.3 g, was applied to the support points of the PHTS pump, and then the seismic induced stresses were calculated. The structural integrity was evaluated according to the ASME code, and the LSP of the PHTS pump was calculated from the evaluation results. Based on the results of the modal analysis and LSP of the PHTS pump, design parameters affecting the LSP were selected. Then, ways to improve the LSP were proposed from sensitivity analysis of the selected design variables. |
---|---|
ISSN: | 1738-5733 2234-358X |
DOI: | 10.1016/j.net.2020.01.018 |