Species distribution modeling for wild boar (Sus scropa) in the Republic of Korea using MODIS data

The distribution of wild boar (Sus scropa) in the Republic of Korea was forecasted using environmental factors. A species distribution model was applied with the standard normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), solar zenith angle (SUNZ), daytime land surface t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of preventive veterinary medicine 2020, 44(2), , pp.89-95
Hauptverfasser: Kim, Eu-Tteum, Pak, Son-Il
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The distribution of wild boar (Sus scropa) in the Republic of Korea was forecasted using environmental factors. A species distribution model was applied with the standard normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), solar zenith angle (SUNZ), daytime land surface temperature (dTemp), and nighttime land surface temperature (nTemp). Understanding wild boar distribution is important for controlling African swine fever (ASF) because the disease could be endemic in wild boar or spread from wild boars to domestic pigs. Among the five predictors, the NDVI was the most influencing factor for the wild boar distribution. The relative contributions of the predictors were 67.4 for NDVI, 16.9 for dTemp, 10.5 for SUNZ, 4.4 for EVI, and 0.8 for nTemp. The area size under the receiver-operating curve of the receiver-operating characteristics for the current model was 0.62, but the real wild boar observation data overlapped with the predicted high-density wild boar distribution area. The wild boar distribution density was relatively higher in Gangwon-do, Gyeongsangbuk-do, Gyeongsangnam-do, and Jeollanam-do. Given the ASF epidemics, contact between ASF-infected animals and ASF-susceptible animals in high-density wild boar distribution areas should be prevented by long-range fencing or active surveillance.
ISSN:2287-7991
2287-8009
DOI:10.13041/jpvm.2020.44.2.89