Enhanced photon shielding efficiency of a flexible and lightweight rare earth/polymer composite: A Monte Carlo simulation study

Photons with the energy of 60 keV are regularly used for some kinds of bone density examination devices, like the single photon absorptiometry (SPA). This article reports a flexible and lightweight rare earth/polymer composite for enhancing shielding efficiency against photon radiation with the ener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and technology 2020, 52(7), , pp.1565-1570
Hauptverfasser: Wang, Ying, Wang, Guangke, Hu, Tao, Wen, Shipeng, Hu, Shui, Liu, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photons with the energy of 60 keV are regularly used for some kinds of bone density examination devices, like the single photon absorptiometry (SPA). This article reports a flexible and lightweight rare earth/polymer composite for enhancing shielding efficiency against photon radiation with the energy of 60 keV. Lead oxide (PbO) and several rare earth element oxides (La2O3, Ce2O3, Nd2O3) were dispersed into natural rubber (NR) and the photon radiation shielding performance of the composites were assessed using monte carlo simulation method. For 60 keV photons, the shielding efficiency of rare earth-based composites were found to be much higher than that of the traditional lead-based composite, which has bad absorbing ability for photons with energies between 40 keV and 88 keV. In comparison with the lead oxide based composite, Nd2O3-NR composite with the same protection standard (the lead equivalent is 0.25 mmPb, 0.35 mmPb and 0.5 mmPb, respectively), can reduce the thickness by 35.29%, 37.5% and 38.24%, and reduce the weight by 38.91%, 40.99% and 41.69%, respectively. Thus, a flexible, lightweight and lead-free rare earth/NR composite could be designed, offering efficient photon radiation protection for the users of the single photon absorptiometry (SPA) with certain energy of 60 keV.
ISSN:1738-5733
2234-358X
DOI:10.1016/j.net.2019.12.028