Solution structure and functional analysis of HelaTx1: the first toxin member of the -KTx5 subfamily
Scorpion venom comprises a cocktail of toxins that have proven to be useful molecular tools for studying the pharmacological properties of membrane ion channels. HelaTx1, a short peptide neurotoxin isolated recently from the venom of the scorpion Heterometrus laoticus, is a 25 amino acid peptide wit...
Gespeichert in:
Veröffentlicht in: | BMB reports 2020, 53(5), , pp.260-265 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Scorpion venom comprises a cocktail of toxins that have proven to be useful molecular tools for studying the pharmacological properties of membrane ion channels. HelaTx1, a short peptide neurotoxin isolated recently from the venom of the scorpion Heterometrus laoticus, is a 25 amino acid peptide with two disulfide bonds that shares low sequence homology with other scorpion toxins. HelaTx1 effectively decreases the amplitude of the K+ currents of voltage-gated Kv1.1 and Kv1.6 channels expressed in Xenopus oocytes, and was identified as the first toxin member of the -KTx5 subfamily, based on a sequence comparison and phylogenetic analysis. In the present study, we report the NMR solution structure of HelaTx1, and the major interaction points for its binding to voltage-gated Kv1.1 channels. The NMR results indicate that HelaTx1 adopts a helix-loop-helix fold linked by two disulfide bonds without any -sheets, resembling the molecular folding of other cysteine-stabilized helix-loop-helix (Cs /) scorpion toxins such as -hefutoxin, HeTx, and OmTx, as well as conotoxin pl14a. A series of alanine-scanning analogs revealed a broad surface on the toxin molecule largely comprising positively- charged residues that is crucial for interaction with voltagegated Kv1.1 channels. Interestingly, the functional dyad, a key molecular determinant for activity against voltage-gated potassium channels in other toxins, is not present in HelaTx1. KCI Citation Count: 0 |
---|---|
ISSN: | 1976-6696 1976-670X |
DOI: | 10.5483/BMBRep.2020.53.5.256 |