Omega Rhodopsins: A Versatile Class of Microbial Rhodopsins
Microbial rhodopsins are a superfamily of photoactive membrane proteins with covalently bound retinal cofactor. Isomerization of the retinal chromophore upon absorption of a photon triggers conformational changes of the protein to function as ion pumps or sensors. After the discovery of proteorhodop...
Gespeichert in:
Veröffentlicht in: | Journal of microbiology and biotechnology 2020, 30(5), , pp.633-641 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microbial rhodopsins are a superfamily of photoactive membrane proteins with covalently bound retinal cofactor. Isomerization of the retinal chromophore upon absorption of a photon triggers conformational changes of the protein to function as ion pumps or sensors. After the discovery of proteorhodopsin in an uncultivated γ-proteobacterium, light-activated proton pumps have been widely detected among marine bacteria and, together with chlorophyll-based photosynthesis, are considered as an important axis responsible for primary production in the biosphere. Rhodopsins and related proteins show a high level of phylogenetic diversity; we focus on a specific class of bacterial rhodopsins containing the '3 omega motif'. This motif forms a stack of three non-consecutive aromatic amino acids that correlates with the B-C loop orientation, and is shared among the phylogenetically close ion pumps such as the NDQ motif-containing sodium-pumping rhodopsin, the NTQ motif-containing chloride-pumping rhodopsin, and some proton-pumping rhodopsins including xanthorhodopsin. Here, we reviewed the recent research progress of these 'omega rhodopsins', and speculated their evolutionary origin of functional diversity. |
---|---|
ISSN: | 1017-7825 1738-8872 |
DOI: | 10.4014/jmb.1912.12010 |