Protein target identifi cation of ginsenosides in skeletal muscle tissues: discovery of natural smallmolecule activators of muscle-type creatine kinase

Background: Ginseng effectively reduces fatigue in both animal models and clinical trials. However, themechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods: By screening for proteins that interact with the primary components of ginseng (ginsenos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ginseng research 2020, 44(3), , pp.461-474
Hauptverfasser: Feiyan Chen, Kexuan Zhu, Lin Chen, Liufeng Ouyang, Cuihua Chen, Ling Gu, Yucui Jiang, Zhongli Wang, Zixuan Lin, Qiang Zhang, Xiao Shao, Jianguo Dai, Yunan Zhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Ginseng effectively reduces fatigue in both animal models and clinical trials. However, themechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods: By screening for proteins that interact with the primary components of ginseng (ginsenosides)in an affinity chromatography assay, we have identified muscle-type creatine kinase (CK-MM) as a potentialtarget in skeletal muscle tissues. Results: Biolayer interferometry analysis showed that ginsenoside metabolites, instead of parent ginsenosides,had direct interaction with recombinant human CK-MM. Subsequently, 20(S)-protopanaxadiol(PPD), which is a ginsenoside metabolite and displayed the strongest interaction with CK-MM in thestudy, was selected as a representative to confirm direct binding and its biological importance. Biolayerinterferometry kinetics analysis and isothermal titration calorimetry assay demonstrated that PPDspecifically bound to human CK-MM. Moreover, the mutation of key amino acids predicted by moleculardocking decreased the affinity between PPD and CK-MM. The direct binding activated CK-MM activityin vitro and in vivo, which increased the levels of tissue phosphocreatine and strengthened the functionof the creatine kinase/phosphocreatine system in skeletal muscle, thus buffering cellular ATP, delayingexercise-induced lactate accumulation, and improving exercise performance in mice. Conclusion: Our results suggest a cellular target and an initiating molecular event by which ginsengreduces fatigue. All these findings indicate PPD as a small molecular activator of CK-MM, which can helpin further developing better CK-MM activators based on the dammarane-type triterpenoid structure. KCI Citation Count: 14
ISSN:1226-8453
2093-4947
DOI:10.1016/j.jgr.2019.02.005