Estimation and Comparison of Cortical Thickness Index and Canal-to-Calcar Ratio Using Manual Method and Deep Learning Method
Manual calculation of the cortical thickness index (CI) and canal-to-calcar ratio (CC) using radiographs has been widely used. The purpose of this study was to investigate the difference between manual gold standard and automatic calculation based on deep convolutional neural networks (CNNs) of the...
Gespeichert in:
Veröffentlicht in: | Journal of electrical engineering & technology 2020, 15(3), , pp.1399-1404 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Manual calculation of the cortical thickness index (CI) and canal-to-calcar ratio (CC) using radiographs has been widely used. The purpose of this study was to investigate the difference between manual gold standard and automatic calculation based on deep convolutional neural networks (CNNs) of the proximal femur. We obtained institutional review board approval to utilize previous radiographs for the study and the radiograph images were used to train CNN architecture. The calculation experiment of a dataset of 136 images of the proximal femur to estimate CI and CC was performed using a trained CNN architecture (Automatic). Also, manual segmentation method (Manual) to calculate CI and CC was conducted using the standard protocol by two experts as a reference for the results comparison. The mean values of the Manual and Automatic calculation of CI for the proximal femur were 0.56 and 0.54, respectively, showing a statistically significant difference (p = 0.035). Significant difference (p |
---|---|
ISSN: | 1975-0102 2093-7423 |
DOI: | 10.1007/s42835-020-00387-9 |