Miniature Slotted Semi-Circular Dual-Band Antenna for WiMAX and WLAN Applications
In this paper, a new approach is presented for designing a miniaturized microstrip patch antenna (MPA) for dual-band applications. The proposed MPA consists of a semi-circular patch radiator fed by a 50-Ω coplanar waveguide (CPW) structure with a tapered-ground plane for enhancing impedance bandwidt...
Gespeichert in:
Veröffentlicht in: | Journal of Electromagnetic Engineering and Science 2020, 20(2), , pp.115-124 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a new approach is presented for designing a miniaturized microstrip patch antenna (MPA) for dual-band applications. The proposed MPA consists of a semi-circular patch radiator fed by a 50-Ω coplanar waveguide (CPW) structure with a tapered-ground plane for enhancing impedance bandwidth over the dual-band. By inserting a folded U-shaped slot into the semi-circular patch, the proposed antenna introduces an additional higher-order mode but does not modify the resonance frequency of the lower-order mode of the patch, yielding the desired dual-band response. For antenna miniaturization, the circular-shaped radiator of the reference antenna (RA) was converted into a semi-circular radiating patch. Agreement between CST and HFSS simulated results led us to manufacture a prototype of the designed antenna on one side of an inexpensive FR-4 substrate with an overall dimension of 17 × 18 × 0.8 mm3. The measured result in terms of reflection coefficient S11 confirms that the antenna operates in both 3.5 GHz (3.4–3.7 GHz) and 5.8 GHz (5.725–5.875 GHz) bands suitable for use in WiMAX and WLAN applications, respectively. Moreover, besides an area reduction of 32% compared with the RA counterpart, the proposed antenna has other features, a simple geometry, and is easy to manufacture in comparison with previously reported antenna structures. |
---|---|
ISSN: | 2671-7255 2671-7263 |
DOI: | 10.26866/JEES.2020.20.2.115 |