Wireless Packet Scheduling Algorithm for OFDMA System based on Time-utility and Channel State

In this paper, we propose an urgency- and efficiency-based wireless packet scheduling (UEPS) algorithm that is able to schedule real-time (RT) and non-real-time (NRT) traffics at the same time while supporting multiple users simultaneously at any given scheduling time instant. The UEPS algorithm is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ETRI journal 2005, 27(6), , pp.777-787
Hauptverfasser: Ryu, Seung-Wan, Ryu, Byung-Han, Seo, Hyun-Hwa, Shin, Mu-Yong, Park, Sei-Kwon
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose an urgency- and efficiency-based wireless packet scheduling (UEPS) algorithm that is able to schedule real-time (RT) and non-real-time (NRT) traffics at the same time while supporting multiple users simultaneously at any given scheduling time instant. The UEPS algorithm is designed to support wireless downlink packet scheduling in an orthogonal frequency division multiple access (OFDMA) system, which is a strong candidate as a wireless access method for the next generation of wireless communications. The UEPS algorithm uses the time-utility function as a scheduling urgency factor and the relative status of the current channel to the average channel status as an efficiency indicator of radio resource usage. The design goal of the UEPS algorithm is to maximize throughput of NRT traffics while satisfying quality-of-service (QoS) requirements of RT traffics. The simulation study shows that the UEPS algorithm is able to give better throughput performance than existing wireless packet scheduling algorithms such as proportional fair (PF) and modified-largest weighted delay first (M-LWDF), while satisfying the QoS requirements of RT traffics such as average delay and packet loss rate under various traffic loads.
ISSN:1225-6463
2233-7326