Hardware-Software Implementation of MPEG-4 Video Codec
This paper presents an MPEG-4 video codec, called MoVa, for video coding applications that adopts 3G-324M. We designed MoVa to be optimal by embedding a cost-effective ARM7TDMI core and partitioning it into hardwired blocks and firmware blocks to provide a reasonable tradeoff between computational r...
Gespeichert in:
Veröffentlicht in: | ETRI journal 2003, 25(6), , pp.489-502 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an MPEG-4 video codec, called MoVa, for video coding applications that adopts 3G-324M. We designed MoVa to be optimal by embedding a cost-effective ARM7TDMI core and partitioning it into hardwired blocks and firmware blocks to provide a reasonable tradeoff between computational requirements, power consumption, and programmability. Typical hardwired blocks are motion estimation and motion compensation, discrete cosine transform and quantization, and variable length coding and decoding, while intra refresh, rate control, error resilience, error concealment, etc. are implemented by software. MoVa has a pipeline structure and its operation is performed in four stages at encoding and in three stages at decoding. It meets the requirements of MPEG-4 SP@L2 and can perform either 30 frames/s (fps) of QCIF or SQCIF, or 7.5 fps (in codec mode) to 15 fps (in encode/decode mode) of CIF at a maximum clock rate of 27 MHz for 128 kbps or 144 kbps. MoVa can be applied to many video systems requiring a high bit rate and various video formats, such as videophone, videoconferencing, surveillance, news, and entertainment. |
---|---|
ISSN: | 1225-6463 2233-7326 |