The Design and Experiment of a Planar Patch Sensor for Partial Discharge Diagnostics in 6.6 kV Rotating Machine Stator Windings

In the stator windings of a 6.6 kV rotating machine, internal discharges, slot discharges, and surface discharges are mainly caused by internal voids and insulation degradation. If a partial discharge(PD) occurs in an inner-part of the stator windings, it will cause electromagnetic pulses with wide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions on electrical and electronic materials 2009, 10(5), , pp.173-176
Hauptverfasser: Yang, Sang-Hyun, Park, Noh-Joon, Park, Dae-Hee, Kim, Hee-Dong, Lim, Kwang-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the stator windings of a 6.6 kV rotating machine, internal discharges, slot discharges, and surface discharges are mainly caused by internal voids and insulation degradation. If a partial discharge(PD) occurs in an inner-part of the stator windings, it will cause electromagnetic pulses with wide frequency ranges. Discharge sparks and electromagnetic pulses generated from a discharge source, can be detected using various RF resonators like an EM sensor. In order to detect these types of electromagnetic sources, a planar patch sensor was designed and fabricated using a CST-MWS simulation, and PD signals from an artificially defected stator winding were also measured by the sensor proposed in this study. Furthermore, an HFCT was used as a reference sensor and compared with the proposed new planar patch sensor. In the results of the experiment, the planar patch sensor showed a similar performance to the HFCT sensor. In the stator windings of a 6.6 kV rotating machine, internal discharges, slot discharges, and surface discharges are mainly caused by internal voids and insulation degradation. If a partial discharge(PD) occurs in an inner-part of the stator windings, it will cause electromagnetic pulses with wide frequency ranges. Discharge sparks and electromagnetic pulses generated from a discharge source, can be detected using various RF resonators like an EM sensor. In order to detect these types of electromagnetic sources, a planar patch sensor was designed and fabricated using a CST-MWS simulation, and PD signals from an artificially defected stator winding were also measured by the sensor proposed in this study. Furthermore, an HFCT was used as a reference sensor and compared with the proposed new planar patch sensor. In the results of the experiment, the planar patch sensor showed a similar performance to the HFCT sensor. KCI Citation Count: 0
ISSN:1229-7607
2092-7592
DOI:10.4313/TEEM.2009.10.5.173