A salt stress-activated mitogen-activated protein kinase in soybean is regulated by phosphatidic acid in early stages of the stress response

Salt stress inhibits plant growth and development and plants activate kinase-dependent survival pathways in response to salt stress. However, the role of soybean mitogenactivated protein kinases (MAPKs) in salt stress response has yet to be characterized. In this study, we found that salt stress act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant biology = Singmul Hakhoe chi 2012, 55(4), , pp.303-309
Hauptverfasser: Im, Jong Hee, Lee, Hyoungseok, Kim, Jitae, Kim, Ho Bang, Seyoung, Kim, Kim, B. Moon, An, Chung Sun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Salt stress inhibits plant growth and development and plants activate kinase-dependent survival pathways in response to salt stress. However, the role of soybean mitogenactivated protein kinases (MAPKs) in salt stress response has yet to be characterized. In this study, we found that salt stress activates Glycine max MAP kinase 1 (GMK1), a soybean MAPK. The activity of GMK1 induced with increasing salt concentrations, up to 300 mM NaCl, after 5 min of the treatment and was regulated by post-translational modification. We found that mastoparan, a heteromeric G-protein activator, also activated GMK1, and that n -butanol, a phospholipase D inhibitor, and neomycin, a phospholipase C inhibitor, inhibited its activity. Moreover, GMK1 activity was reduced by suramin, a heteromeric G-protein inhibitor, and by two inhibitors of phosphatidic acid (PA) generation after 5 min of 300 mM NaCl treatment. Endogenous PA levels were highest 5 min after induction of salt stress, and exogenous PA directly activated GMK1. From these data, we propose that salt stress signaling is transduced from heteromeric G-protein to GMK1 via phospholipases in the early stages of the response to salt stress in soybean.
ISSN:1226-9239
1867-0725
DOI:10.1007/s12374-011-0036-8