GC/MS 분석과 베이지안 분류 모형을 이용한 새 윤활유와 사용 엔진 오일의 동일성 추적과 분류
The aims of this work were the identification and the classification of fresh lubricants and used engine oils of vehicles for the application in forensic science field-80 kinds of fresh lubricants were purchased and 86 kinds of used engine oils were sampled from 24 kinds of diesel and gasoline vehic...
Gespeichert in:
Veröffentlicht in: | Punsŏk kwahak 2014, 27(1), , pp.41-59 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aims of this work were the identification and the classification of fresh lubricants and used engine oils of vehicles for the application in forensic science field-80 kinds of fresh lubricants were purchased and 86 kinds of used engine oils were sampled from 24 kinds of diesel and gasoline vehicles with different driving conditions. The sample of lubricants and used engine oils were analyzed by GC/MS. The Bayesian model technique was developed for classification or identification. Both the wavelet fitting and the principal component analysis (PCA) techniques as a data dimension reduction were applied. In fresh lubricants classification, the rates of matching by Bayesian model technique with wavelet fitting and PCA were 97.5% and 96.7%, respectively. The Bayesian model technique with wavelet fitting was better to classify lubricants than it with PCA based on dimension reduction. And we selected the Bayesian model technique with wavelet fitting for classification of lubricants. The other experiment was the analysis of used engine oils which were collected from vehicles with the several mileage up to 5,000 km after replacing engine oil. The eighty six kinds of used engine oil sample with the mileage were collected. In vehicle classification (total 24 classes), the rate of matching by Bayesian model with wavelet fitting was 86.4%. However, in the vehicle's fuel type classification (whether it is gasoline vehicle or diesel vehicle, only total 2 classes), the rate of matching was 99.6%. In the used engine oil brands classification (total 6 classes), the rate of matching was 97.3%. 국내 시판제품으로 서울시내에서 구입한 산업용 윤활유, 이륜구동 윤활유, 선박용 윤활유, 자동차용 윤활유(엔진오일, 수동 변속기 기어유, 자동변속기 오일) 등 80종(기유 4종 포함)의 새 윤활유들(80 classes)과 8종의 경유 차량과 16종의 휘발유 차량에 각각 3종씩의 경유와 휘발유 전용 엔진 오일로 교환하여 차량별 및 주행거리별로 각각 채취한 사용 엔진 오일 86종을 GC/MS로 분석한 TIC로 데이터베이스를 만들고, 새 윤활유와 사용 엔진오일들의 동일성 추적과 차량별 분류를 위하여 차원 축소와 베이지안 방식의 분류 모형을 개발하였다. 새 윤활유의 분류는 웨이블렛 적합방법과 주성분 분석방법으로 차원 축소하여 베이지안 방식의 분류 모형을 적용한 결과 각각 97.5%와 96.7%의 정분류율을 보여 차원 축소는 웨이블렛 적합방법이 더 좋은 결과를 나타냈다. 그리고 새 윤활유의 분류에서 선택된 웨이블렛 적합방법의 차원 축소와 베이지안 방식의 분류 모형에 의한 사용 엔진 오일의 차량별 분류(총 24 classes)는 86.4%의 정분류율을 보였고, 경유 차량인지 휘발유 차량인지를 구분하는 차량 연료 타입별 분류(총 2 classes)는 99.6%의 정분류율을 나타내었고, 사용 엔진 오일 브랜드별 분류(총 6 classes)는 97.3%의 정분류율을 나타내었다. |
---|---|
ISSN: | 1225-0163 2288-8985 |
DOI: | 10.5806/AST.2014.27.1.41 |