Cascade Integral Predictors and Feedback Control for Nonlinear Systems with Unknown Time-varying Input-delays

In this paper, we consider the problem of predictor design for nonlinear systems in the presence of unknown time-varying input-delays. A cascade integral high-gain predictor is proposed to estimate the future state. With a distinctive structure, the predictor can handle unknown delays and eliminate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems 2020, Automation, and Systems, 18(5), , pp.1128-1138
Hauptverfasser: He, Kanghui, Dong, Chaoyang, Wang, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the problem of predictor design for nonlinear systems in the presence of unknown time-varying input-delays. A cascade integral high-gain predictor is proposed to estimate the future state. With a distinctive structure, the predictor can handle unknown delays and eliminate the “peaking phenomenon” during the transient period. Then, a predictor-based output feedback control is designed to guarantee the boundedness of system states. Lyapunov-Krasovskii functional and perturbation theories are used to prove the convergence of the estimation error and the closed-loop system. Finally, simulation results illustrate the superior performance of the cascade integral predictor compared to the standard high-gain predictor.
ISSN:1598-6446
2005-4092
DOI:10.1007/s12555-019-0405-x