Cascade Integral Predictors and Feedback Control for Nonlinear Systems with Unknown Time-varying Input-delays
In this paper, we consider the problem of predictor design for nonlinear systems in the presence of unknown time-varying input-delays. A cascade integral high-gain predictor is proposed to estimate the future state. With a distinctive structure, the predictor can handle unknown delays and eliminate...
Gespeichert in:
Veröffentlicht in: | International journal of control, automation, and systems 2020, Automation, and Systems, 18(5), , pp.1128-1138 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the problem of predictor design for nonlinear systems in the presence of unknown time-varying input-delays. A cascade integral high-gain predictor is proposed to estimate the future state. With a distinctive structure, the predictor can handle unknown delays and eliminate the “peaking phenomenon” during the transient period. Then, a predictor-based output feedback control is designed to guarantee the boundedness of system states. Lyapunov-Krasovskii functional and perturbation theories are used to prove the convergence of the estimation error and the closed-loop system. Finally, simulation results illustrate the superior performance of the cascade integral predictor compared to the standard high-gain predictor. |
---|---|
ISSN: | 1598-6446 2005-4092 |
DOI: | 10.1007/s12555-019-0405-x |