STS316 용사코팅의 최적 공정 설계

In the present study, process optimization for thermal-sprayed STS316 coating has been performed using $L_9(3^4)$ orthogonal array and analysis of variance (ANOVA). STS316 coatings were fabricated by flame spray process on steel substrate, and the hardness test and microstructure observation of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Han-guk haeyang gonghak hoeji (Online) 2010, 24(1), 92, pp.161-165
Hauptverfasser: 김균택, 김영식, Kim, Kyun-Tak, Kim, Yeong-Sik
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, process optimization for thermal-sprayed STS316 coating has been performed using $L_9(3^4)$ orthogonal array and analysis of variance (ANOVA). STS316 coatings were fabricated by flame spray process on steel substrate, and the hardness test and microstructure observation of the coatings were studied. The results of hardness test were analyzed by ANOVA. The ANOVA results showed that the spray distance had the greatest effect on hardness of the coating, on the other hands, the effects of oxygen gas flow and spray distance were ignorable. From these results, the optimal combination of the flame spray parameters could be derived, and confirmation experiment was carried out to verify these derived results. The calculated hardness of the coatings by ANOVA was found to approximately close to that of confirmation experimental result. Thus, it was considered that design of experiments using orthogonal array and ANOVA was effective for process optimization of thermal-sprayed STS316 coating.
ISSN:1225-0767
2287-6715