RICCI SOLITONS AND ∗-GRADIENT RICCI SOLITONS ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS

The object of the present paper is to characterize $3$-dimen\-sional trans-Sasakian manifolds of type $(\alpha,\beta)$ admitting $\ast$-Ricci solitons and $\ast$-gradient Ricci solitons. Under certain restrictions on the smooth functions $\alpha$ and $\beta$, we have proved that a trans-Sasakian $3$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2020, 35(2), , pp.625-637
Hauptverfasser: Dibakar Dey, Pradip Majhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The object of the present paper is to characterize $3$-dimen\-sional trans-Sasakian manifolds of type $(\alpha,\beta)$ admitting $\ast$-Ricci solitons and $\ast$-gradient Ricci solitons. Under certain restrictions on the smooth functions $\alpha$ and $\beta$, we have proved that a trans-Sasakian $3$-manifold of type $(\alpha,\beta)$ admitting a $\ast$-Ricci soliton reduces to a $\beta$-Kenmotsu manifold and admitting a $\ast$-gradient Ricci soliton is either flat or $\ast$-Einstein or it becomes a $\beta$-Kenmotsu manifold. Also an illustrative example is presented to verify our results. KCI Citation Count: 1
ISSN:1225-1763
2234-3024
DOI:10.4134/CKMS.c190121